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Resonant Modes in Shielded Cylindrical
Ferrite and Single-Crystal
Dielectric Resonators

JERZY KRUPKA

Abstract —The Galerkin-Rayleigh-Ritz method is applied for comput-
ing the first few lowest resonant frequencies of cylindrical anisotropic
resonators in a cylindrical cavity. The resonators are allowed to have
gyromagnetic and uniaxial dielectric anisotropy with respect to the z axis
of the cylinder. Results of computations of the resonant frequenciés are
compared with exact solutions for many simple resonant structures and
with results of experiments for more complicated structures. A new method
of measuring permeability tensor components is presented. The method
utilizes two parallel-plate cylindrical resonators operating in the HE; and
Hy;; modes. A method of measuring permittivity tensor components of
single crystals is proposed using one parallel-plate cylindrical resonator
operating in two different modes.

I. INTRODUCTION

N THIS PAPER the resonant modes of cylindrical

anisotropic resonators in cylindrical cavities are dis-
cussed. The geometry under study is illustrated schemati-
cally in Fig. 1. This configuration is important for such
applications as the precise measurement of permeability or
permiittivity tensor components of low-loss anisotropic ma-
terials and the design of circulators containing a ferrite
cylinder. It is assumed that the resonator is made of a
lossless medium characterized by the following permittiv-
ity and permeability tensors:

e 0 0

€=10 € 0 §))
[0 0 ¢
(b —Jjk 0

g=|jc p 0. (2)
[0 0
II. THEORY

In order to determine the resonant frequencies of the
resonant system shown in Fig. 1, we shall solve the follow-
ing eigenvalue problem:

(3)
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Fig. 1. Cylindrical anisotropic resonator in a cylindrical cavity.
where
L= [ 0 curl ] _ €6 0
curl 0 0 —pfi
3= |E|
H

Here E and H are the electric and magnetic fields inside
the cavity, and S is the surface of the cavity. A rigorous
solution to problem (3) obtained by means of the
Galerkin—Rayleigh—Ritz method (G-R-R method) |1}, [2]
using an empty cavity (having the same boundary S)
serves as a basis. The solution to the original problem (3) is
taken to be

- N — N —,

E=Y afE0+ Y ofF?
n=1 n'=1
N . N N

H=Y ofH'+ ¥ oSG (4)
n=1 n' =1

where af, a, af, af, are field expansion coefficients to be
determined, E:?, ﬁ:? are rotational electric and magnetic
basis functions corresponding to the electric and magnetic
fields of an empty cavity having boundary S, and ji?, G_:?,,
are potential electric and magnetic basis functions of an
empty cavity having boundary S. Full expressions for the
basis functions of a cylindrical cavity are given in the
Appendix.

Substituting (4) into (3), forming inner products with
each of the basis functions, and finally eliminating [a"],
[«f], and [«“] from the system of linear equations, one
obtains [1], [2]

k=1,2,---,N (5)
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where
[4] = [@] 7' [m™][Q] ' [m*"]
[m¥] =[] = [ [ 7) [0

] = [m""] = [mHG][mGG]”[mGH]

= (e,€EL, B0, mFE = (¢ £F0, Ek>
mpy = <Mo.l7H,?,H/?>a mpy <H0:“'G0’ >
(The elements of the remaining matrices [mf?], [mfF],

[m©C], and [m®"] are defined in the same way.) In addi-
tion,

] 0 0

0
[Q] — 0 Wy 0
0 0 w3

(f.-&)= ffg*dv and §,, = Kronecker delta.
daf vy

The system of equations (5) has nontrivial solutions for
w2 values that are eigenvalues of the matrix [4]. If a
complete set of basis functions is used, an exact solution to
the original problem can be obtained, at least in principle,
by letting N, N’, and N” — 0. To take advantage of the
rotational symmetry of the resonant system we can con-
sider modes having different ¢ dependences separately.
This reduces the size of the matrix eigenvalue problem and

allows easier mode identification.

I1I. COMPUTATIONS

Standard Fortran routines for matrix inversion and
computations of matrix eigenvalues have been applied in
the computer program used for the numerical solution of
the problem (5). Integrals containing products of Bessel
functions and their derivatives have been computed nu-
merically (Gaussian quadrature) for ¢-dependent modes
and analytically for ¢-independent modes. As the first
example of our computations we consider a cavity com-
pletely filled with a gyromagnetic medium. The following
parameters have been taken for the computatlons L=h
=a=R, ¢,=¢, and p,=p. The Hmnp and GO func-
tions have been taken as a basis. For each m. and p we
took the basis with n=1,2,---,13. The size of matrix [A4],
however, was 26 X 26 since it depends on the total number
of rotational functions (13 for the electric-type and 13 for
the magnetic-type functions). The results of computations
of the normalized resonant frequencies for the first few
modes versus |k /u| values are presented in Figs. 2 and 3
(broken lines). For comparison, exact resonant frequency
values are drawn (solid lines). The exact values were found
as roots of the well-known transcendental equation derived
by Kales [3]. Modes marked with a plus or minus super-
script correspond to k/p ratios that are, respectively,
positive or negative. Modes without a superscript show the
same behavior for «/p both positive and negative. The
convergence of the G-R-R method depends on the « /u
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Fig. 2. Normalized resonant frequencies for z-dependent modes of the
cylindrical cavity completely filled with gyromagnetic medium versus
|x/p|values. L=h=a=R_,¢,=¢, p,=p. exact values; ————
approximate values obtained by means of the G-R—R method.
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Fig. 3. Normalized resonant frequencies for z-independent modes of
the cylindrical cavity completely filled with gyromagnetic medium
versus |k /p| values L=h, a=R,. exact values; ———— approxi-
mate values obtained by means of the G-R-R method.

value and the mode of interest. For |x/u|< 0.4, differ-
ences between exact and approximate results are not greater
than 0.2 percent for all modes considered in Figs. 2 and 3.
For ¢-dependent modes the convergence strongly depends
on the sign of rotation or, what is equivalent, the sign of
& /. For all modes with a minus superscript the conver-
gence is worst than for modes with the opposite sign. This
is presented in Table I for the H;f; modes. For the HE;,
mode the poorest convergence occurs for k /p = —0.8 (1.05
percent error) while for « /u = —1.0 it improves (0.8 per-
cent error). For the HE{], mode the convergence is excel-
lent (0.05 percent error) for all « /p values considered in
Table 1. For modes with rotational symmetry the conver-
gence depends on the |k /u| value and the mode of interest.
For the H,; mode the poorest convergence occurs for
[k /p] = 0.7, while for all z-independent modes (Fig. 3) this
occurs for |k /u|=1.
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TABLE I
NormaLIZED HE; MODE FREQUENCIES OF THE CYLINDRICAL CAVITY
CoMPLETELY FILLED WITH GYROMAGNETIC MEDIUM
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TABLE II
NormavLizep HE[f, MoDE FREQUENCIES OF THE CYLINDRICAL
GYROMAGNETIC RESONATOR IN A CYLINDRICAL CAVITY

Mode HE 22 H HEy Mode HET HEn HES,
& ~10 | -08 | -a6 [ ~0g|-a2 | 0 |02 | as | a6 | 08 | 10 ”K ~10 | -08 | -06|-04|-02| 0 | a2z | a5 | 10
3 | 49493 4.7625] 45034 4.1929 | 3.8935 | 3.6414 | 14371 | 3.2714 | 3.1350] 30213 | 2.9250 o |_3_| 47770| 4.8638| 4.9743] 4.7270] 4.1876 | 38048] 35289 3 2295 2.9010
8 ['50353]4.9243] 4.5950| 4.2181 | 3.8967| 3.6414 | 3.360| 3.2734 | 31379 | 3.0246 | 2.9289 18 | 45933] 46703] 4.7608 | 4.6876| 4 7821 | 3.8059] 3.5303 | 32374 | 2 9046
1 506861 4.9590] 4.61721 4.2243| 3.8975| 3.6914 | 3.4383| 3.2790 | 3.1386| 3.0254| 2.9294 o |13 | 459571 4.67120 | 4.7615 | 4.6868 ) 4.1834| 38076 | 3.5327| 32335| 29073
\erad] 377701 50118 | 4.6537| 4.2345] 3 8988] 36474 | 3,4386] 3.2745 | 3.1399 | 3.0268 | 29309 Re=3a | 8 | 45993 46736] 47697 4 6903] 4.1795| 38032| 3.5275] 3 2285] 2.9013
The frequencies are computed using a different number of basis func- The frequencies are computed using a different number of basis func-
tions (all basis functions are taken with subscripts n=1,2,- -+, n_. ). tions (all basis functions are taken with subscripts n=1,2,- -+, n,,..).
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Fig. 4. Normalized resonant frequencies for interior modes of the cylin-
drical gyromagnetic resonator in a cylindrical cavity versus |k/ul
values. L=h=a, R, >2a,¢.=¢=10, p,=p=1.

As a second example we consider a cavity containing a
ferrite cylinder having the same height but a radius differ-
ent from that of the cavity. The following parameters have
been taken for computations: L=h=a, R ,=2a, e=¢,
=10, and p = p, =1. A basis taken for the computations is
similar to that used in the first example but it additionally
includes the electric basis functions E,‘,’m , and F,f,’,,p with
n=1,2,---,13. The results of computations of the normal-
ized resonant frequencies for the first few interior modes
are presented in Fig. 4. We notice that, as with dielectric
resonators, we can divide all modes into two categories:
the interior modes and the exterior ones. For the first
category the energy stored in the electromagnetic field is
predominantly concentrated in the gyromagnetic medium
and, what is more important, it does not radiate outside
the resonator in the absence of the lateral surface of the
cavity (assuming that the flat surfaces are infinitely large).
For the second category, in the absence of the lateral
surface of the cavity, radiation of energy always takes
place and the Q factor for these modes is low. The
convergence of the G-R-R method for all interior modes
considered in Fig. 4 seems to be better than for the
completely filled cavity. The convergence for the HE,
modes is presented in Table II. Normalized frequency
values obtained with a different number of basis functions
(M yax =8 and n_,, =13) and for different radii of the
cavity (R,=2a and R_=3a) are consistent for all values

wayep /c values for h=L=a, p=p, =10, and €= ¢, =10.
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Fig. 5. (a) Normalized resonant frequencies for Eff, modes of the
cylindrical gyromagnetic resonator versus a /R, values, with ¢, =10
and p =1. (b) Normalized resonant frequencies for Efi, modes of the
cylindrical gyromagnetic resonator versus |k /u| values, with ¢, =10,
p=1,and a/R, =05

considered in Table I1. For the completely filled cavity, the
differences between results obtained with n,, =8 and
. =13 were much greater (Table I). For R, > 2a the
resonant frequencies for all the interior modes considered
in Fig. 4 do not depend on R, Hence the results shown in
Fig. 4 are also valid for a parallel-plate gyromagnetic
resonator having the same parameters.

We remark that for a gyromagnetic rod having the same
height as the height of the cavity (or as the distance
between plates for the parallel-plate resonator) the charac-
teristic equation is also known [4], so exact solutions could
have been obtained. We decided not to solve the above-
mentioned equation (except for the z-independent modes,
where it becomes relatively simple) since it is rather cum-
bersome.

In Fig. 5 the results of computations of the E{f, mode
frequencies are presented versus the relative radius (a /R )
of the sample (Fig. 5(a)) and versus |« /u| for fixed a /R,
value (Fig. 5(b)). For these modes we have also solved the
transcendental equation [4], [5] to get its exact solutions.
However the differences between the exact results (roots of
the transcendental equation) and the approximate ones
were too small to make them in the scale of Fig. 5.
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Fig. 6. Normalized resonant {requencies for the first few modes of the
cylindrical gyromagnetic resonator in a cylindrical cavity versus |« /u|
values. h=a, R,=2a, L=2h,¢,=€¢=10, p,=p=1.

Generally we can state that the convergence of the G-R-R
method is worse for small a/R, values. The resonant
frequencies of the Ef; modes do not depend on L/R_, «,
or u, but depend strongly on the a /R, value. We also
observe that mode splitting for these modes disappears for
a /R, =1 (this can also be seen in Fig. 3).

In Fig. 6 we present results of computations of the
normalized resonant frequencies versus |k /u| for a reso-
nant system for which exact solutions are not available.
The following parameters have been taken for computa-
tions: h=a, R,=2a, L=2h, e=¢,=10, p=p,=1, m
=0, and m =1. Subscripts # and p of the basis functions
used for the above computations are presented schemati-
cally in Fig. 7.

As the next example we consider the influence of uniax-
ial magnetic and dielectric anisotropy on the resonant
frequencies of different modes for a completely filled
cavity and for a cavity having the same height but different
radius from that of the anisotropic medium. For a cylindri-
cal cavity completely filled with medium having uniaxial
anisotropy (assuming that the anisotropy axis is parallel to
the z axis of the cavity) the normalized resonant frequency
values are given explicitly by the following expressions [6]:

wayfep /e = \/u,zme/ez +(pma/L)’

for E,,,, modes

(6)

wayfep /e =(ul,,) /b, +( pma /L)’
for H,,, modes (7)

where u,,, denotes the nth zero of the mth-order Bessel
function, and u},, is the nth zero of the derivative of the
mth-order Bessel function. It is seen that the H,,, , modes
are independent of the dielectric anisotropy and the E »
modes are independent of the magnetic anisotropy. Hence,
for a cylindrical cavity with dielectric uniaxial anisotropy,
the G-R-R method leads to exact results for all H,, ,
modes. The same is true for magnetic uniaxial anisotropy

for all E,, , modes. It is not so evident that the G-R-R
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Fig. 7. Subscripts of basis functions used for computations of frequen-

cies in Fig. 6

method leads also to exact results for all modes of a
cylindrical cavity completely filled with media having elec-
tric and /or magnetic uniaxial anisotropy. It can be proved
that in this case the matrices [m*®] and [m] become
diagonal and expressions (6) and (7) can be derived di-
rectly from their diagonal elements.

As for gyromagnetic resonators, we have used only the
G-R-R method for computations of the resonant fre-
quencies of a cavity partially filled with media having
dielectric uniaxial anisotropy. The results of computations
of normalized resonant frequencies for the first four inte-
rior modes of the resonant system with parameters L =}
=a, R,=2a, p=u,=1, and k=0 are shown in Fig, 8.
The EY,, and F9  functions with n=1,2,---,8 have
been taken as a basis. The results shown in Fig. 8 are also
valid for R, = co for the same reason as for interior modes
of the gyromagnetic resonators considered earlier. We ob-
serve in Fig. 8 that only the Hg;; mode (generally all H,,
modes) does not depend on the €, value. This is clear since
for a < R, all ¢-dependent modes are hybrid so they have
the electric field component parallel to the axis of
anisotropy.

IV. EXPERIMENTS

We employed two cylindrical parallel-plate resonators
made of the same material (yttrium-iron-garnet ferrite) but
having different dimensions for measurements of all per-
meability tensor components versus external field inten-
sity. The dimensions of the resonators were chosen in such
a way as to get approximately the same frequencies for the
HE,,, mode of the smaller resonator and the Hy,; mode of
the greater one for a demagnetized sample. (We used two
resonators to minimize errors caused by the dependence of
the tensor components on frequency.) As the first step of
our experiment the surface resistance of the metal plates
was measured using two low-loss dielectric Hy;; mode
resonators made of the same material and having the same
resonant frequencies but different aspect ratios [7]. As the
second step, the permittivity, the scalar permeability, and
the electric and magnetic loss tangents of the greater
ferrite resonator were measured by means of Courtney’s
method [8]. Then the resonant frequencies and unloaded Q
factors of the HE(;,, HE{;, and H,;; modes were mea-
sured versus magnetic field intensity. The results of the
experiments are presented in Fig. 9. For each value of
external field intensity the real parts of the permeability
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Fig. 8. Normalized resonant frequencies. for interior modes of the cylin-
drical resonator, having dielectric uniaxial anisotropy, in a cylindrical
cavity versus €, /¢ values. L=h=a, R > 2a, ¢=10.
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Fig. 9. Resonant frequencies and unloaded Q factors of the cylindrical
parallel-plate yttrium-iron-garnet resonators versus external magnetic
field intensity. results of experiments for the HE®, mode
resonator having & = 7.02 mm, a = 3.52 mm, ¢ =14.15, and tang, =1.9
X 1074 ———— results of experiments for the Hy; mode resonator
having 4 = 8.38 mm, a =419 mm, € =14.15, and tan§, =1.9x 1074

tensor components were found by an iterative solution of
the following system of equations:

(8)
(9)
(10)

fr=f=F(p,xp,)
f; +fr+ = F2(H'7 K, lu‘z)
fP=F(p,ic,p,)

where £, £, and f° are the resonant frequencies of the
HE;,,, HE{,;. and Hg,; modes, respectively.

Equations (8) and (9) were arranged in such a way that
function F; depends predominantly on x and function F,
depends predominantly on g. This arrangement improves
the iterative process used for the solution of the above
system of equations. We have used the same computer
program used in the previous section of this paper for the
computations of F}, F,, and F;.

The imaginary parts of the permeability tensor compo-
nents were found after computations of their real parts as
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Fig. 10. Permeability tensor components for yttrium-iron-garnet res-
onators versus external magnetic field intensity computed on the

ground of experiments presented in Fig. 9. e=14.15, tan§, =1.9X 1074,

solutions of the following systefn of equations:

(07) '=(07) "+ p - Im(e)/e+ pzIm(e,) /e,
+ p Im(p)/p
+p. Im(k)/k+ pIm(p.)/p. (11)

(@) ' =(Q7) "+ pi Im(e) /e + p Im(e.) /e,
+p, Im(p)/p
+p Im(x) /i + plIm(p.)/p,
(0°) "= (%) "+ pPIm(e) /e + poIm(e,) /e,
+ p0Tm () /1
+pdIm(x)/k + pp. Im(p,) /b, (13)

Here Q~, 0", and QO are the unloaded Q factors for the
HE;,, HE{};, and Hy,; mode, respectively; Q7, 0., and
Q? are the Q factors depending on conductor losses for
the HE{;;, HE{};, and Hg;; mode, respectively; and p,,
po, and p? are the electric or the magnetic energy filling
factors computed as follows [9]:

pe =2|0f/dx|x/f,
Py =210 /0xIx /17
pe=2191°/0x|x/f?

where x denotes ¢, €,, u, &, or p,, respectively.
To avoid rather cumbersome Q. factor computations
the following simplifications have been employed:

1) The value of the unloaded Q factor for the HE
mode (with no field applied) was measured and the
value of Q, for this mode was evaluated from (11) or
(12) assuming that the material properties for the
HE,; and the H,; mode resonators were the same.

2) It was assumed that when the magnetic field is ap-
plied all Q, factors change their values only due to
the change of the surface resistance value. (It is well
known that the surface resistance is proportional to
the square root of frequency.)

(12)
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TABLE III
MEASUREMENTS OF PERMITTIVITY TENSOR COMPONENTS OF
SINGLE-CRYSTAL QUARTZ

Mode Hon HEz19 Eor
Resonant frequency(MHz) | 85405 | 86634 8718.5
Parameter ta be measured | =443 | £=4.59 | £2=4.58

h=L=940; a =18.85 mm; R = 70 mm.
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Fig. 11. Hgs-mode resonant frequency of the cylindrical yttrium-iron-
garnet resonator having 4 =838 mm, 4 =419 mm, L=10.00 mm,
and €=14.15 versus external magnetic field intensity. Permeability
tensor components are taken to be the same as in Fig. 10.

The results of the computations of permeability tensor
components are presented in Fig. 10. We remark that the
method described here is particularly useful for measure-
ments of low-loss ferrites.

Measurements of permittivity tensor components of sin-
gle-crystal quartz were performed using only one cylindri-
cal resonator operating on different modes (components of
the permittivity tensor of quartz are constants up to in-
frared frequencies [10] so we do not need to measure them
at fixed frequency). The manufacturer ensured that the z
axis of the resonator cylinder is oriented along the
anisotropy axis of the crystal with an accuracy better than
1°. The resonant frequencies for the first few modes of the
resonator have been measured in the Courtney holder. The
results of measurements and computations of permittivity
tensor components are presented in Table III. First we
found the ¢ component of the permittivity tensor solving
the transcedental equation for the H;; mode (it is exactly
the same as for the isotropic Hy,; mode resonator). Then
we found the ¢, component both from the E ; mode
frequency and from the HE,;; mode frequency. The ¢,
value was found graphically with the aid of the computer
program described in the previous section. The values of €
and ¢_ obtained here (Table III) agree to within 0.5 per-
cent with the results obtained by Wolff and Schwab [10].

In our last experiment we measured the resonant fre-
quencies of an H;; mode resonator made of yttrium-iron-
garnet ferrite versus the external magnetic field intensity.
We used the same resonator as in our first experiment but
the distance between conducting plates was made greater
(L =10 mm) than the height of the ferrite. The experimen-
tal results are presented in Fig. 11. We also computed the
Hg; mode resonant frequencies of the resonator for the
frequency ranges where the permeability tensor compo-
nents were known. The results of the computations are

shown in Fig. 11 in solid lines. The agreement between
theory and experiment confirms the validity of the theory
for more complicated resonant structures as well.

V. CONCLUSIONS

In this paper a numerical method was discussed which
makes it possible to understand the influence of uniaxial
anisotropy and gyrotropy on the resonant frequencies of
cylindrical anisotropic resonators. It has also been shown
how to use such resonators for measurements of permittiv-
ity or permeability tensor components. We note that the
computer program used for our computations can easily be
modified for analysis of more complicated resonant struc-
tures having rotational symmetry (e.g. a ferrite resonator
on microstrip line).

APPENDIX
Basis FUNCTIONS FOR CYLINDRICAL CAVITY

1) Magnetic-Type Rotational Basis Functions:
EOY— —cul{ 4/
TOH OH, )1 H
H'W = (jwl o) curlcurl(xpl zz)
Wl'= 4,7, (ko) sin (kfz) exp (+ jmg)
k)'=u},/a kf'=pw/L, p=1.273,---

2

= o (Il (K2’
i being any permutation of (m, n, p).
2) Electric-Type Rotational Basis Functions:
E% = (ju%,) 7lcurlcurl(xplEij)
HOE = curl( IET)
vF = B,J,,(kip)cos (kfz)exp (& jmo)

E_
kp =U,,/a

w?E= q/(kf)z-%-(kf)z .

3) Potential Electric-Type Basis Functions:

kE=pw/L, p=01,2---

F° = grad ¢

oF = C,Jm(kfp) sin(kz) exp (+ jmo).
4) Potential Magnetic-Type Basis Functions:

GP = grad ¢

/"= D,J, (ko) sin(kZz)exp (& jme).

Here 4,, B,, C, and D, are amplitudes chosen so as to
obtain orthonormal sets of basis functions; i.e. the func-
tions are subjected to the following conditions:

<‘0Ejov EO> =1 <M0ﬁ10, 17,°> =1

(e, F2) =1 (4GP, G°) =1.
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