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Resonant Modes in Shielded Cylindrical
Ferrite and Single-Crystal

Dielectric Resonators

JERZY KRUPKA

Abstract —The Gaferkhr-Rayleigh-Ritz method is applied for compnt-

ing the first few lowest resonant frequencies of cylindrical anisotropic

resonators in a cylindrical cavity. The resonators are nflowed to have

gyrosnagnetic and uniaxial dielectric anisotropy with respect to the z axis

of the cylinder. Results of computations of the resonant frequenci& are

coinp~ed with exact solutions for many simple resonant structures and

with results of experiments for more complicated structures. A new method

of measuring permeability tensor components is presented. The method

utiliies two parallel-plate cylindrical resonators operating in the HEl~ ~ and

HO1l modes. A method of measuring permittivity tensor components of
single crystals is proposed using one parallel-plate cylindrical resonator

operating in two different modes.

I. INTRODUCTION

I N THIS PAPER the resonant modes of cylindrical

anisotropic resonators in cylindrical cavities are dis-

cussed. The geometry under study is illustrated schemati-

cally in Fig. 1. This configuration is important for such

applications as the precise measurement of permeability y or

permittivity tensor components of low-loss anisotropic ma-

terials and the design of circulators containing a ferrite

cylinder. It is assumed that the resonator is made of a

lossless medium characterized by the following permittiv-

ity and permeability tensors:
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II. THEORY

In order to determine the resonant frequencies of the

resonant system shown in Fig. 1, we shall solve the follow-

ing eigenvalue problem:

Ld = juikf~

iixz=o on S (3)
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Fig. 1. Cylindrical ankotropic resonator in a cylindrical cavity.

where

1H]
Here ~ and ~ are the electric and magnetic fields inside

the cavity, and S is the surface of the cavity. A rigorous

solution to problem (3) obtained by means of the

Galerkin-Rayleigh-Ritz method (G-R-R method) 11], [2]

using an empty cavity (having the same boundary S)

serves as a basis. The solution to the original problem~ (3) is

taken to be

where a:, a:, c&, a~, are field expansion coefficients to be

determined, ~~, fi~o are rotational electric and magnetic

basis functions corresponding to the electric and magnetic

fields of an empty cavity having boundary S, and ~~, ~~,

are potential electric and magnetic basis functions of an

empty cavity having boundary S. Full expressions for the

basis functions of a cylindrical cavity are given in the

Appendix.

Substituting (4) into (3), forming inner products with

each of the basis functions, and finally eliminating [ a~],

[aF], and [ ac] from the system of linear equations, one

obtains [1], [2]

f (4ab+t=o, k=l,2,... , iv’ (5)
~=1
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where

[A] = [Q]-1[m~][f2-l[ nz~]

[?n~] = [m~~]-[m~~][m~~]-’[m~~]

[rn~] = [m~~]-[q~c][n,cc]-’[mc~]

m~~= (~O@, ~t), m~~= (CO~@, ~1’)

m:?= (PoF@> @)> m::= (Po@3 @?).

(The elements of the remaining matrices [mFF], [mFE],

[wzGG], and [mG~] are defined in the same way.) In addi-

tion,

II

a: 0 . . . 0

0[Q]= .0 ‘“; ::: . . .

00 u;

(f g) ; ~fg”dv and 8m. = Kronecker delta.

The system of equations (5) has nontrivial solutions for

u – 2 values that are eigenvalues of the matrix [A]. If a

complete set of basis functions is used, an exact solution to

the original problem can be obtained, at least in principle,

by letting N, N’, and N“ -+ cc. To take advantage of the

rotational symmetry of the resonant system we can con-

sider modes having different ~ dependence separately.

This reduces the size of the matrix eigenvalue problem and

allows easier mode identification.

III. COMPUTATIONS

Standard Fortran routines for matrix inversion and

computations of matrix eigenvalues have been applied in

the computer program used for the numerical solution of

the problem (5). Integrals containing products of Bessel

functions and their derivatives have been computed nu-

merically (Gaussian quadrature) for ~-dependent modes

and analytically for @independent modes. As the first

example of our computations we consider a cavity com-

pletely filled with a gyromagnetic medium. The following

parameters have been taken for the computations: L = h
=a=R ~, <= = c, and pZ = p. The H~~P and ~~~P func-

tions have been taken as a basis. For each m. and p we

took the basis with n =1, 2,...,13. The size of matrix [A],

however, was 26X 26 since it depends on the total number

of rotational functions (13 for the electric-type and 13 for

the magnetic-type functions). The results of computations

of the normalized resonant frequencies for the first few

modes versus IK/PI values are presented in Figs. 2 and 3

(broken lines). For comparison, exact resonant frequency

values are drawn (solid lines). The exact values were found

as roots of the well-known transcendental equation derived

by Kales [3]. Modes marked with a plus or minus super-

script correspond to K/~ ratios that are, respectively,

positive or negative. Modes without a superscript show the

same behavior for K/~ both positive and negative. The

convergence of the G–R–R method depends on the K/~
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Fig. 2. Normalized resonant frequencies for z-dependent modes of the

cylindrical cavity completely filled with gyromagnetic medium versus

lfc/plv~ues. L=h=a=RC, c==<, pz=p. — exact values; ––––

approximate vahres obtained by means of the G–R–R method.

1 1 1 I/1 I

60 -

50 -

*

Lq40 - EIIO
Jy

3.20 -

[010

Fig, 3. Normalized resonant frequencies for z-independent modes of

the cylindrical cavity completely filled with gyromagnetic medmm
versus /K/pi vafues L= h, a = RC. — exact values; –––– approxi-
mate values obtained by means of the G–R–R method.

value and the mode of interest. For [K/p\ <0.4, differ-

ences between exact and approximate results are not greater

than 0.2 percent for all modes considered in Figs. 2 and 3.

For @dependent modes the convergence strongly depends

on the sign of rotation or, what is equivalent, the sign of

~/P. For all modes with a minus superscript the conver-
gence is worst than for modes with the opposite sign. This

is presented in Table I for the H~l modes. For the HE:II

mode the poorest convergence occurs for K/p = – 0.8 (1.05

percent error) while for K/p = – 1.0 it improves (0.8 per-

cent error). For the HE~ll mode the convergence is excel-

lent (0.05 percent error) for all K/p values considered in

Table I. For modes with rotational symmetry the conver-

gence depends on the IK/pi value and the mode of interest.

For the HO1l mode the poorest convergence occurs for
IK/Wl = 0.7, while for all z-independent modes (Fig. 3) this

occurs for IK/p I +1.
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TABLE I
NORMALIZED HE~l MODE FREQUENCIES OF THE CYLINDRICAL CAVITY

COMPLETELY FILLED WITH GYROMAGNETIC MSDIUM

B5

1

HE/; Hllf HE$

~ .7,0 -0.8 -0.6 -0.4 -Q2 o 02 0.4 a6 0,8 %0

3 4.9443 4.7625 45034 4.1929 3.8935 3.6414 3437r 3.2714 3.1350 30213 2.9250”
8 50353 4.9243 4.5950 4.21@ 3.s?267 3.6414 3.4380 3.2734 31379 3.0246 2.9285

13 506.% 4. 955W 4.6172 4.2243 3.8975 3.6414 3.4383 3.2740 3.1386 3.0254 2,9294
era i170 s m18 0. fi37 4.2345 38988 36414 3.43% 3.2749 3.1399 3.0268 29309

The frequencies are computed using a different number of basis func-

tions (all basis functions are taken with subscripts n =1,2,. . . . nmm ).

rOa cp/cvalues forh=L=a= R,, p=p,, andc=cz.

z~~
o a2 a4 0.6 a8 %0 %2 t4

lK/#1

Fig. 4. Normalized resonant frequencies for interior modes of the cylin-

drical gyromagnetic resonator in a cylindrical cavity versus lIC/pl
values. L=h=a, R,> 2a, C:= C=lO, p:=p=l.

As a second example we consider a cavity containing a

ferrite cylinder having the same height but a radius differ-

ent from that of the cavity. The following parameters have

been taken for computations: L = h = a, RC = 2a, c = c=

=10, and p = p= = 1. A basis taken for the computations is

similar to that used in the first example but it additionally

includes the electric basis functions ~~HP and &P with

n=l,2, ””” ,13. The results of computations of the normal-

ized resonant frequencies for the first few interior modes

are presented in Fig. 4, We notice that, as with dielectric

rescmators, we can divide all modes into two categories:

the interior modes and the exterior ones. For the first

category the energy stored in the electromagnetic field is

predominantly concentrated in the gyromagnetic medium

and, what is more important, it does not radiate outside

the resonator in the absence of the lateral surface of the

cavity (assuming that the flat surfaces are infinitely large).

For the second category, in the absence of the lateral

surface of the cavity, radiation of energy always takes

place and the Q factor for these modes is low. The

convergence of the G–R–R method for all interior modes

considered in Fig. 4 seems to be better than for the
completely filled cavity. The convergence for the HEfil

modes is presented in Table II. Normalized frequency

values obtained with a different number of basis functions

(32.,== 8 and n ~= =13) and for different radii of the

cavity (R. = 2a and R.= 3a) are consistent for all values

TABLE II

NORMALIZED HEfil MODE FREQUENCIES OF THE CYLINDRICAL

GYROMAGNETIC RESONATOR IN A CYLINDRICAL CAVITY

c —

Hode H[ ;, HE*7 HEr;,

n

:

-0,2 0 0,2 0,5 10

~ 3 4.7770 4.8638 4.9743 4.7270 41876 3.8048 J,5289 32296 2,9010

1 45933 46703 4,7608 4.6876 41821 3.8059 3.5303 3,231f 29C46
. 1: 4.5$’51 4.6720 4.7615 4.686S 4.1834 3,8076 3.5327 32323 29073

Rc:3a 8 4,5943 46728 47647 46903 4.1795 3.8032 3.5273 32285 2.9013

The frequencies are computed using a different number of bas is func-

tions (all basis functions are taken with subscripts n =1,2,. . ~, n,nm ).

rtia cP/cvalues forh=L=a, p=p: =l.O, and~=~z=lO.

4.0

m

\, p$!!l -o‘\

K/ -05
\

\ Et;
\
\

.?0 \
\

Eli ‘,
\

~
\
\

I a)
\\ I
a/Rc

Fig. 5. (a) Normalized resonant frequencies for E,+n modes of the
~ylind~c’d gyromagnetic resonator ~ersus a/R, V;iiks, with (= =10
and p =1.. (b) Normalized resonant frequencies for El~O modes of the
cylindrical gyromagnetic resonator versus lK/p I values, with c, =10,
p=l, and a/RC =0.5.

considered in Table II. For the completely filled cavity, the

differences between results obtained with n mm = 8 and

n =13 were much greater (Table I). For R.> 2a the

re~~nant frequencies for all the interior modes considered

in Fig. 4 do not depend on R.. Hence the results shown in

Fig. 4 are also valid for a parallel-plate gyromagnetic

resonator having the same parameters.

We remark that for a gyromagnetic rod having the same

height as the height of the cavity (or as the distance

between plates for the parallel-plate resonator) the charac-

teristic equation is also known [4], so exact solutions could

have been obtained. We decided not to solve the above-

mentioned equation (except for the z-independent modes,

where it becomes relatively simple) since it is rather cum-

bersome.

In Fig. 5 the results of computations of the E& mode

frequencies are presented versus the relative radius (a /RC)

of the sample (Fig. 5(a)) and versus IK/PI for fixecl a/R.

value (Fig. 5(b)). For these modes we have also solved the

transcendental equation [4], [5] to get its exact solutions.

However the differences between the exact results (roots of

the transcendental equation) and the approximate ones

were too small to make them in the scale of Fig. 5.
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Fig. 6. Normahzed resonant frequencies for the first few modes of the
cyhndrical gyromagnetlc resonator in a cylindrical cavity versus lm/pl
values. h=a, RC= 2a, L=21r, c:=c=lO, p==p=l.

Generally we can state that the convergence of the G-R-R

method is worse for small a/R ~ values. The resonant

frequencies of the EfiO modes do not depend on L/R ~, c,

or p= but depend strongly on the a/R, value. We also

observe that mode splitting for these modes disappears for

a/R, = 1 (this can also be seen in Fig. 3).

In Fig. 6 we present results of computations of the

normalized resonant frequencies versus IK/p I for a reso-

nant system for which exact solutions are not available.

The foIlowing parameters have been taken for computa-

tions: h=a, RC= 2a, L=2h, c=c, =1O, p=pz=l, m

= O, and m =1. Subscripts n and p of the basis functions

used for the above computations are presented schemati-

cally in Fig. 7.

As the next example we consider the influence of uniax-

ial magnetic and dielectric anisotropy on the resonant

frequencies of different modes for a completely filled

cavity and for a cavity having the same height but different

radius from that of the anisotropic medium. For a cylindri-

cal cavity completely filled with medium having uniaxial

anisotropy (assuming that the anisotropy axis is parallel to

the z axis of the cavity) the normalized resonant frequency

values are given explicitly by the following expressions [6]:

ua@/c = {u~nt/c= + (pna/L)2 for E~nP modes

(6)

for HMHP modes (7)

where u~n denotes the n th zero of the m th-order Bessel

function, and u~n is the n th zero of the derivative of the

m th-order Bessel function. It is seen that the Hn~P modes

are independent of the dielectric anisotropy and the En~P

modes are independent of the magnetic anisotropy. Hence,

for a cylindrical cavity with dielectric uniaxial anisotropy,

the G–R–R method leads to exact results for all H,,,~P

modes. The same is true for magnetic uniaxial anisotropy

for all E~~P modes. It is not so evident that the G–R–R

;
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Fig. 7. Subscripts of basis functions used for computations of frequen-
cies in Fig, 6

method leads also to exact results for all modes of a

cylindrical cavity completely filled with media having elec-

tric and/or magnetic uniaxial anisotropy. It can be proved

that in this case the matrices [ m‘] and [ m‘] become

diagonal and expressions (6) and (7) can be derived di-

rectly from their diagonal elements.

As for gyromagnetic resonators, we have used only the

G–R–R method for computations of the resonant fre-

quencies of a cavity partially filled with media having

dielectric uniaxial anisotropy. The results of computations

of normalized resonant frequencies for the first four inte-

rior modes of the resonant system with parameters L = h

=a, ~C= 2a, p=p, =l, and IC=O are shown in Fig. 8.

The EO~~P and ~~~P functions with n =1, 2,. ..,8 have

been taken as a basis. The results shown in Fig. 8 are also

valid for R, * cm for the same reason as for interior modes

of the gyromagnetic resonators considered earlier. We ob-

serve in Fig. 8 that only the Hell mode (generally all Ho~P

modes) does not depend on the c= value. This is clear since

for a < RC all @dependent modes are hybrid so they have

the electric field component parallel to the axis of

anisotropy.

IV. EXPERIMENTS

We employed two cylindrical parallel-plate resonators

made of the same material (yttrium-iron-garnet ferrite) but

having different dimensions for measurements of all per-

meability tensor components versus external field inten-

sity. The dimensions of the resonators were chosen in such

a way as to get approximately the same frequencies for the

HEIII mode of the smaller resonator and the Hell mode of

the greater one for a demagnetized sample. (We used two

resonators to minimize errors caused by the dependence of

the tensor components on frequency.) As the first step of
our experiment the surface resistance of the metal plates

was measured using two low-loss dielectric H ~11 mode

resonators made of the same material and having the same

resonant frequencies but different aspect ratios [7]. As the

second step, the permittivity, the scalar permeability, and

the electric and magnetic loss tangents of the greater

ferrite resonator were measured by means of Courtney’s

method [8]. Then the resonant frequencies and unloaded Q

factors of the HEfil, HE~ll, and HOII modes were mea-

sured versus magnetic field intensity. The results of the

experiments are presented in Fig. 9. For each value of
external field intensity the real parts of the permeability
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Fig. 8. Normalized resonant frequencies for interior modes of the cylin-

drical resonator. havirw dielectric uniaxial anisotrorw. in a cylindrical
cavity versus Cz)c vafu&. L = h = a, R, > 2a, c =i~; ‘
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Fig. !). Resonant frequencies ~d &loaded Q factors of the cylindrical

parallel-plate yttrium-iron-garnet resonators versus external magnetic
field intensity. — results of experiments for the HEl~l mode
resonator having h = 7.02 mm, a = 3.52 mm, t =14.15, and tanc?e = 1.9

x 10– 4. –––– results of experiments for the Hell mode resonator

having h = 8.38 mm, a = 4.19 mm, c=14.15, and tand, =1.9x 10-4.

tensor components were found by an iterative solution of

the following system of equations:

(8)j,-–f:=F1(P, K>Pz)

f,- +/; = ~2(/L>K>P.) (9)

f:=q(P>K>P,) (lo)

where f,-, j,+, and ~,” are the resonant frequencies of the

HEl~l, HE~ll, and HO1l modes, respectively.
Equations (8) and (9) were arranged in such a way that

function F1 depends predominantly on K and function Fz

depends predominantly on p. This arrangement improves
the iterative process used for the solution of the above

system of equations. We have used the same computer

program used in the previous section of this paper for the

computations of Fl, F2, and F3.

The imaginary parts of the permeability tensor compo-

nents were found after computations of their real parts as

bY>
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0 foo m m 400 ~
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Fig. 10. Permeability tensor components for yttrium-iron-garnet res-

onators versus external magnetic field intensity computed on the
ground of experiments presented in Fig. 9. c =14.15, tan 8, = 1.9 X 10-4.

solutions of the following system of equations:

(f_-) -’=(Q:J-’+ p,- Im(e)/e + p,j Im((=)/cz

+ P,- Im(P)/P

+ p~- Im(K)/K + PP; lrn(~,)/~, (11)

(Q+) -’=(Q])-’+ P> Im(f)/~ + P: Im(f:)/’~:

+P; Im(P)/P

+p~Im(~)/K +p~Im(P,)/P, (12)

(QO)-’= (Q~)-1+p~Im(6)/c +pOIm(~ )/cez Zz

+pjIm(~)/p.

+ p#Im(K)/K + p~ZIm(pz)/pz. (13)

Here Q- , Q+, and Q“ are the unloaded Q factors lfor the

HE~l, HE~ll, and HOII mode, respectively; Q;, Q; , and

Q: are the Q factors depending on conductor losses for

the HE~ll, ‘HE~ll, and H ~11mode, respectively; and pX- ,

px+ , and p: are the electric or the magnetic energy filling

factors computed as follows [9]:

pX- = 21dj-/dxlx/f,-

P:= 2 I~fr+/’’~xlf:f:

P:= 21~f:/~-4x/frO
where x denotes c, c,, p, K, Or p=, respectively.

To avoid rather cumbersome QC factor computations

the following simplifications have been employed:

1)

2)

The value of the unloaded Q factor for the HEIII

mode (with no field applied) was measured and the

value of QC for this mode was evaluated from (11) or

(12) assuming that the material properties for the

HEIII and the Hell mode resonators were the same.

It was assumed that when the magnetic field is ap-

plied all QC factors change their values only due to
the change of the surface resistance value. (It is well

known that the surface resistance is proportional to

the square root of frequency.)
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TABLE III

MEASUREMENTS OF PERMITTIVITY TENSOR COMPONENTS OF

SINGLE-CRYSTAL QUARTZ

I I r I 1

Mode Holf HEz1f Eolj

Resonant frequencq@Hz) 8540.5 8663.4 8718.5
hrameier to be measured E-443 s=- 4.59 EZ-4. 58

h = L= 9.40; a =18.85 mm; Rc = 70 mm

$?4, , 1 I 1 I

I .; . . . experiments I

A
—theory

.
●

88
.!

o 100 200 300 400 500 600
Ho (kA/m)

Fig. 11. H018-mode resonant frequency of the cylindrical yttrium-iron-

garnet resonator having h = 8.38 mm, a = 4.19 mm, L = 10.00 mm,

and c = 14.15 versus external magnetic field intensity. Permeability

tensor components are taken to be the same as in Fig. 10.

The results of the computations of permeability tensor

components are presented in Fig. 10. We remark that the

method described here is particularly useful for measure-

ments of low-loss ferrites.

Measurements of permittivity tensor components of sin-

gle-crystal quartz were performed using only one cylindri-

cal resonator operating on different modes (components of

the permittivity tensor of quartz are constants up to in-

frared frequencies [10] so we do not need to measure them

at fixed frequency). The manufacturer ensured that the z

axis of the resonator cylinder is oriented along the

anisotropy axis of the crystal with an accuracy better than

10. The resonant frequencies for the first few modes of the

resonator have been measured in the Courtney holder. The

results of measurements and computations of permittivity

tensor components are presented in Table III. First we

found the c component of the permittivity tensor solving

the transcendental equation for the HOII mode (it is exactly

the same as for the isotropic HOII mode resonator). Then

we found the c= component both from the EOII mode

frequency and from the HE211 mode frequency. The c=

value was found graphically with the aid of the computer

program described in the previous section. The values of c

and c. obtained here (Table III) agree to within 0.5 per-

cent with the results obtained by Wolff and Schwab [10].

In our last experiment we measured the resonant fre-

quencies of an H018 mode resonator made of yttrium-iron-

garnet ferrite versus the external magnetic field intensity.

We used the same resonator as in our first experiment but

the distance between conducting plates was made greater

(L= 10 mm) than the height of the ferrite. The experimen-

tal results are presented in Fig. 11. We also computed the

H018 mode resonant frequencies of the resonator for the
frequency ranges where the permeability tensor compo-

nents were known. The results of the computations are

shown in Fig. 11 in solid lines. The agreement between

theory and experiment confirms the validity of the theory

for more complicated resonant structures as well.

V. CONCLUSIONS

In this paper a numerical method was discussed which

makes it possible to understand the influence of uniaxial

anisotropy and gyrotropy on the resonant frequencies of

cylindrical anisotropic resonators. It has also been shown

how to use such resonators for measurements of permittiv-

ity or permeability tensor components. We note that the

computer program used for our computations can easily be

modified for analysis of more complicated resonant struc-

tures having rotational symmetry (e.g. a ferrite resonator

on microstrip line).

APPENDIX

BASIS FUNCTIONS FOR CYLINDRICAL CAVITY

1)Magnetic-Type Rotational Basis Functions:

(1
QH = – curl $:1<

~H= (jti~~p,)-’curlcurl[l?z)

+:= A, J., (k~~)sin(k~z)exp(+ ~mo)

k;= u~./a k~=pv/L, p=l,2,3,. . .

ti:H=c~(k~)2+(k~)’>

i being any permutation of (m, n, p ).

2) Electric-Type Rotational Basis Functions:

@e= (ju~%,) “curlcurl[~~l) 1;

()ti,”~ = curl jb~~

4:= B, J~(k~~)cos(k~z) exp(-1 ~m+)

k;= u.n/a kf=p~/L, p=o,l,2, . . .

@E=c/(k:)’+(k:)2.

3) Potential Electric-Type Basis Functions:

~ = grad O:

@~= CIJ~(k~p] sin(k?z)exp(+j m@).

4) Potential Magnetic-Type Basis Functions:

@ = grad O:

+~=DIJm(k~p) sin(k~z)exp(+jm@).

Here Al, B,, (2,, and D, are amplitudes chosen so as to

obtain orthonormal sets of basis functions; i.e.

tions are subjected to the following conditions:

(co@,@’) =1 (pofi:, E:) =1

(cop, p) =1 (Po@>Gv=l.

the func-



KRUPKA: RESONANT MODES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

R. F. Barrington, Field Computations by Moment Methods. New

York: Macmillan, 1968, ch. 9.

V. V. Nikolskij, Variational Methods for Electrodynamics Problems.

Moscow: Science, 1967, ch. 2.

M. L. Kales, “Modes in wavegnides ~ontairring ferrites,” J. Appl.

Phys., vol. 24, pp. 604-608, May 1953.

R. A. Waldron, “Electromagnetic wave propagation in cylindrical

waveguide containing gyromagnetic media,” J. Brit. Inst. Radio
Eng., vol. 18, pp. 597-610, pp. 671-690, pp. 733-746, 1958.
H. E. Bussey and L. A. Steinert, “Exact solution for a gyromagnetic
sample and measurements on a ferrite,” IRE Tram. Microwaoe
Theoty Tech., vol. MTT-6, pp. 72-76, Jan. 1958.

A. G. Gurevich, Ferrites at Microwave Frequencies. New York:
Consultants Bureau Enterprises, Inc., 1963, ch. 5.

J. Krtrpka, “An accurate method of permittivity and loss tangent
measurements of low loss dielectrics using TE018 dielectric res-

onators,” in Proc. 5th Int. Corf Dielectric Materials, Measurements

and Applications (Canterbury, UK) 27–30 June 1988, pp. 322–325.
W. E. Courtney, “Analysis and evaluation of a method of measur-
ing the complex permittivity and permeability of microwave insula-

tors,” IEEE Trans. Microwave Theory Tech., vol. MlT18, pp.
476-485, Aug. 1970.

J. Krnpka, “Properties of shielded cylindrical quasi-TEOmn-mode
dielectric resonators: IEEE Trans. Microwave Theory Tech., vol.
36, pp. 774–779, Apr. 1988.

[10] I. Wolff and N. Schwab,
dielektrischer Materialien

deutscher Verlag, 1980.

697

Messing der Dielektrizit~tszahl anizotroper
im Mikrowellenbereich. Opladen: West-

.Jerzy Krnpka was born in Cracow, Poland, in
1949. He received the M. SC. (honors) and Ph.D.
degrees from the Warsaw University of Technol-

ogy in 1973 and 1977, respectively.
Since 1973 he has been associated with the

Institute of Microelectronics and Optoelectron-
ics, Warsaw University of Technology, where he

is now an Assistant Professor. While on leave

during the academic year 1981/1982 he was a

Lecturer in the Physics Department, University

of Jos. Ni~eria. His current research interests are

concerned with numerical metho{s in electromagnetic field theory and
measurements of dielectric and magnetic material properties at mi-
crowave frequencies.

,


